BBO-11818, an orally bioavailable, highly potent and non-covalent pan-KRAS inhibitor demonstrates robust anti-tumor activity in **KRAS-mutant preclinical models**

Gitego N.^{1*}, Sullivan K.^{1*}, Singh K.^{1*}, Rigby M.^{2*}, Ma R.², Alexander P.², Zhang Z.¹, Setoodeh S.¹, Lin K.¹, Rabara D.², Larsen E.², Sharma A. K.², Chan A.², Stephen A.², Yang Y.¹, Pei J.³, Feng C.¹, Feng S.¹, Stice J.¹, Wang K.¹, Xu R.¹, Lightstone F. C.³, Simanshu D.², Nissley D.², McCormick F.², Wallace E.¹, Wang B.¹, Beltran P. J.¹, Maciag A. E.², Sinkevicius K.¹, Stahlhut C.¹

1-BridgeBio Oncology Therapeutics, South San Francisco, CA. 2-NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD. 3-Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, CA.

Overview

- Oncogenic variants of KRAS drive tumor growth and metastasis through aberrant signaling, making them important therapeutic targets.¹ Inhibitors against KRAS^{G12C} have recently been approved, but a major clinical need for agents against other KRAS variants remains.^{1, 2}
- We have developed BBO-11818: a potent, selective, orally bioavailable noncovalent KRAS inhibitor with activity against multiple KRAS mutants, including KRAS^{G12D} and KRAS^{G12V.}
- BBO-11818 targets KRAS in both its inactive GDP-bound and active GTPbound states, potently suppressing MAPK signaling and inhibiting cell proliferation in KRAS-mutant cell lines.
- BBO-11818 monotherapy induces strong anti-tumor responses, including strong dose- and time-dependent inhibition of pERK and regressions at welltolerated doses in CDX models of KRAS-mutant pancreatic, non-small cell lung, and colorectal cancer.
- In combination with BBO-10203, a selective RAS:PI3K α breaker that blocks RAS-mediated activation of AKT; or cetuximab, an anti-EGFR monoclonal antibody, BBO-11818 shows significantly enhanced efficacy in CDX models harboring KRAS^{G12D} or KRAS^{G12V} mutations. Similarly, the combination of BBO-11818 and anti-PD-1 antibody improves survival in a KRAS^{G12D} syngeneic model.

Methods

SPR: Surface plasmon resonance direct binding assays to determine affinity of BBO-11818 to GppNHp- or GDP-loaded avi-tagged KRAS proteins were performed. **Protein:protein interaction:** A PPI Homogeneous Time-Resolved Fluorescence (HTRF) assay was

used to determine compound effectiveness in disrupting KRAS protein and effector (RAF1) binding. ERK phosphorylation. Cells were seeded and the next day treated with BBO-11818. Two hours posttreatment, pERK phosphorylation was assessed by HTRF.

3D viability. Cells were seeded and treated with BBO-11818 three days post-seeding after spheroid formation. Four days post-treatment, viability was assessed with the CellTiter-Glo viability assay. Long-term 2D clonogenic assay. Cells were seeded, treated 24 hours later with BBO-11818, BBO-10203 (PI3Kα:RAS breaker) or cetuximab and incubated for 14 or 15 days. Media and compounds were changed biweekly. Confluence was measured twice daily using an Incucyte Live-Cell Analysis

Pharmacokinetics (PK) and pharmacodynamics (PD). Dose and time response PK/PD analyses were performed following a single oral dose of BBO-11818. Plasma and tumors were collected for PK and pERK analysis using the MesoScale Discovery platform.

In vivo efficacy and survival studies. BBO-11818 efficacy was assessed following twice daily (BID) oral dosing at the indicated dose levels in cell line-derived xenograft (CDX) or syngeneic models bearing KRAS^{G12D} or KRAS^{G12V} mutations. BBO-10203 was dosed orally once daily (QD). Anti-PD-1 or cetuximab were administered twice weekly (BIW) by intraperitoneal administration. Tumor growth inhibition (TGI), mean tumor regression (REG), and number of complete regressions (CR) were calculated

BrdU incorporation and cleaved caspase-3 assays. Capan-2 tumor-bearing mice were dosed with a single oral dose of the indicated treatments and 50 mg/kg BrdU intraperitoneally 2 hours prior to tumor collection at the indicated timepoints. Formalin-fixed tumors were prepared and sectioned. Immunohistochemistry (IHC) for BrdU and cleaved caspase-3 was performed, and positive staining for BrdU and cleaved caspase-3 was quantitated to measure levels of tumor cell proliferation and apoptosis, respectively.

Statistical analyses: Two-way repeated measures ANOVA followed by post hoc Tukey's multiple comparison test through day 14 or 15 were performed for clonogenic assays. One-way ANOVA for PD and IHC studies and two-way repeated measures ANOVA for *in vivo* efficacy studies were performed with Dunnett's test vs the vehicle group or between the indicated groups.

BBO-11818 is a potent and selective pan-KRAS binder and KRAS:RAF1 PPI inhibitor

		BBO-11818	
	RAS Allele	GppNHp	GDP
	KRAS ^{G12D}	17	<0.01
	KRAS ^{G12V}	18	0.031
RAS SPR,	KRAS ^{G13D}	26	0.28
К _D (nM)	KRAS ^{WT}	40	0.23
	NRAS ^{WT}	>20000	2700
	HRAS ^{WT}	>20000	880
	KRAS ^{G12D}	28	
	KRAS ^{G12V} 59		
KRAS(GTP)/RAFT effector, IC ₅₀ (nM)	KRAS ^{G12C}	46	
	KRAS ^{G12R}	49	
	KRAS ^{WT}	117	

* Equal contribution

BBO-11818 inhibits ERK phosphorylation and cell proliferation in KRAS-mutant cell lines

KRAS variant	Mean EC ₅₀ (nM)
KRAS ^{G12D}	2.95
KRAS ^{G12V}	9.95
KRAS ^{G12C}	1.53
KRAS ^{G12A}	3.46
KRAS ^{G12R}	357
KRAS ^{G12S}	11.9
KRAS ^{G13D}	19.8
KRAS ^{Q61X}	278
KRAS ^{AMP}	4.35
Non-KRAS Driven	> 10 µM

KRAS variant	Mean EC ₅₀ (nM)
KRAS ^{G12D}	2.21
KRAS ^{G12V}	28.9
KRAS ^{G12C}	2.26
KRAS ^{G12A}	5.32
KRAS ^{G12R}	400
KRAS ^{G12S}	3.09
KRAS ^{G13D}	71.7
KRAS ^{Q61X}	3170
KRASAMP	10.9
Non-KRAS Driven	5,220

14
12
10
8
6
4

BBO-11818 has a favorable ADME and PK profile and is orally bioavailable

Parameter	BBO-11818
Mouse PK CL (mL/min/kg) / V (L/kg) / % F	45 / 4.9 / 18
Rat PK CL (mL/min/kg) / V (L/kg) / % F	30 / 7.8 / 16
Dog PK CL (mL/min/kg) / V (L/kg) / % F	11 / 5.8 / 28
Minipig PK CL (mL/min/kg) / V (L/kg) / % F	47 / 7.8 / 27
Selectivity: hERG & safety panel	No red flags
Minimal DDI liabilities for combinations	No predicted DDI issues

BBO-11818 demonstrates dose- and time-dependent inhibition of pERK in a KRAS^{G12D} model

Time response: 100 mg/kg

