# BBO-11818: an orally bioavailable, highly potent and selective noncovalent pan-KRAS(ON) and (OFF) inhibitor with robust anti-tumor activity in KRAS-mutant preclinical models



Stahlhut C.<sup>1</sup>, Maciag A.E.<sup>2</sup>, Sullivan K.<sup>1#</sup>, Singh K.<sup>1#</sup>, Gitego N.<sup>1#</sup>, Zhang Z.<sup>1</sup>, Chan A.<sup>2</sup>, Sharma A. K.<sup>2</sup>, Alexander P.<sup>2</sup>, Shu J.<sup>1</sup>, Yang Y.<sup>1</sup>, Rigby M.<sup>2</sup>, Ma R.<sup>2</sup>, Setoodeh S.<sup>1</sup>, Smith B.P.<sup>2</sup>, Pei J.<sup>3</sup>, Rabara D.<sup>2</sup>, Larsen E.K.<sup>2</sup>, Turner D.<sup>2</sup>, Zhang C.<sup>1</sup>, Feng S.<sup>1</sup>, Stice J.P.<sup>1</sup>, Xu R.<sup>1</sup>, Lin K.<sup>1</sup>, Stephen A.G.<sup>2</sup>, Lightstone F.C.<sup>3</sup>, Ji C.<sup>1</sup>, Wang K.<sup>1</sup>, Simanshu D.K.<sup>2</sup>, Nissley D.V.<sup>2</sup>, Wallace E.<sup>1</sup>, Wang B.<sup>1</sup>, Sinkevicius K.W.<sup>1</sup>, McCormick F.<sup>2,4</sup>, Beltran P.J.<sup>1</sup>

1- BridgeBio Oncology Therapeutics, South San Francisco, California.

2- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland

3- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California

4- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California

### # Equal contribution

#### Overview

- Oncogenic variants of KRAS drive tumor growth and metastasis through aberrant signaling, making them important therapeutic targets. Inhibitors against KRAS<sup>G12C</sup> have recently been approved, but a major clinical need for agents against other KRAS variants remains.<sup>1, 2</sup>
- We have developed BBO-11818: a potent, selective, orally bioavailable noncovalent KRAS inhibitor with activity against multiple KRAS mutants, including KRAS<sup>G12D</sup> and KRAS<sup>G12V</sup>.
- BBO-11818 targets KRAS in both its inactive GDP-bound and active GTP-bound states, potently suppressing MAPK signaling and inhibiting cell proliferation in KRAS-mutant cell lines.
- BBO-11818 monotherapy induces strong anti-tumor responses, including strong dose- and time-dependent inhibition of pERK and regressions at welltolerated doses in CDX models of KRAS-mutant pancreatic, non-small cell lung, and colorectal cancer.
- In combination with BBO-10203, a selective RAS:PI3K $\alpha$  breaker that blocks RAS-mediated activation of AKT; or cetuximab, an anti-EGFR monoclonal antibody, BBO-11818 shows significantly enhanced efficacy in CDX models harboring KRAS<sup>G12D</sup> or KRAS<sup>G12V</sup> mutations. Similarly, the combination of BBO-11818 and anti-PD-1 antibody improves survival in a KRAS<sup>G12D</sup> syngeneic model.

# Methods

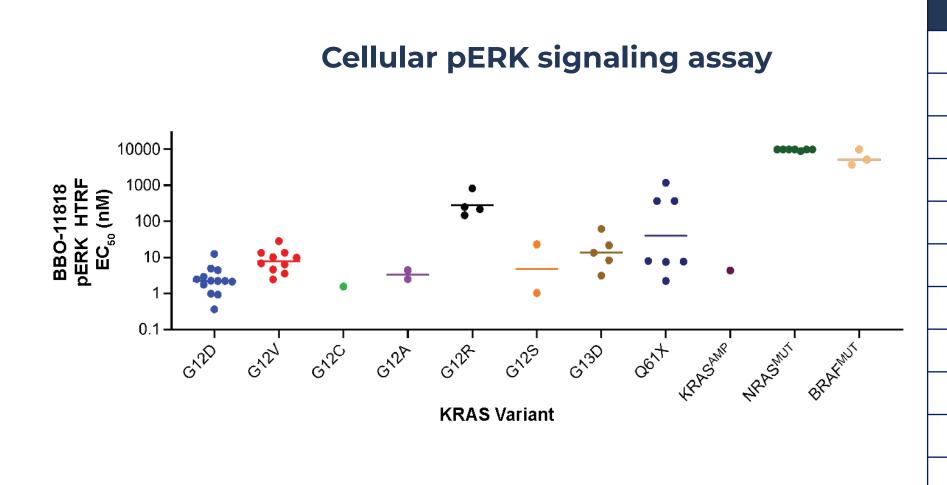
SPR: Surface plasmon resonance direct binding assays to determine affinity of BBO-11818 to GppNHp- or GDP-loaded avi-tagged KRAS proteins were performed.

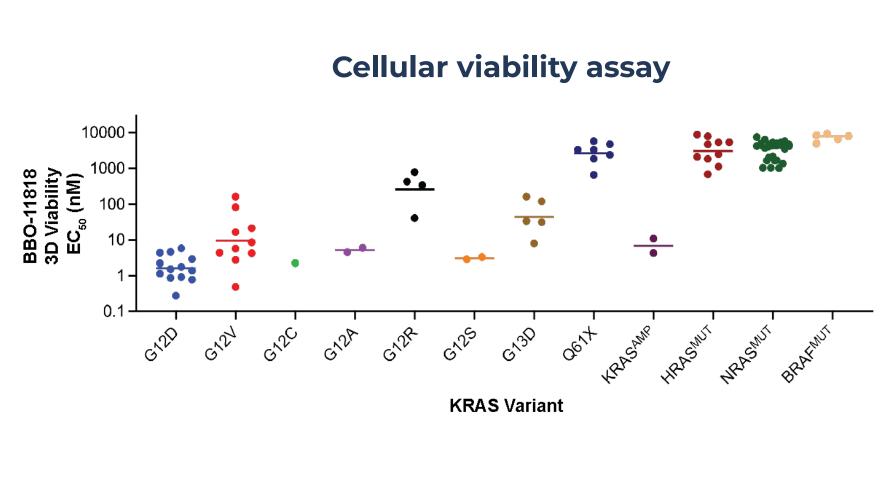
Protein:protein interaction: A PPI Homogeneous Time-Resolved Fluorescence (HTRF) assay was used to determine compound effectiveness in disrupting KRAS protein and effector (RAF1) binding. ERK phosphorylation. Cells were seeded and the next day treated with BBO-11818. Two hours posttreatment, pERK phosphorylation was assessed by HTRF.

**3D viability.** Cells were seeded and treated with BBO-11818 three days post-seeding after spheroid formation. Four days post-treatment, viability was assessed with the CellTiter-Glo viability assay. Long-term 2D clonogenic assay. Cells were seeded, treated 24 hours later with BBO-11818, BBO-10203 (PI3K $\alpha$ :RAS breaker) or cetuximab and incubated for 15 or 20 days. Media and compounds were changed biweekly. Confluence was measured twice daily using an Incucyte Live-Cell Analysis

Pharmacokinetics (PK) and pharmacodynamics (PD). Dose and time response PK/PD analyses were performed following a single oral dose of BBO-11818. Plasma and tumors were collected for PK and pERK analysis using the MesoScale Discovery platform.

In vivo efficacy and survival studies. BBO-11818 efficacy was assessed following twice daily (BID) oral dosing at the indicated dose levels in cell line-derived xenograft (CDX) or syngeneic models bearing KRAS<sup>G12D</sup> or KRAS<sup>G12V</sup> mutations. BBO-10203 was dosed orally once daily (QD). Anti-PD-1 or cetuximab were administered twice weekly (BIW) by intraperitoneal administration. Tumor growth inhibition (TGI), mean tumor regression (REG), and number of complete regressions (CR) were calculated.


BrdU incorporation and cleaved caspase-3 assays. Capan-2 tumor-bearing mice were dosed with a single oral dose of the indicated treatments and 50 mg/kg BrdU intraperitoneally 2 hours prior to tumor collection at the indicated timepoints. Formalin-fixed tumors were prepared and sectioned. Immunohistochemistry (IHC) for BrdU and cleaved caspase-3 was performed, and positive staining for BrdU and cleaved caspase-3 was quantitated to measure levels of tumor cell proliferation and apoptosis, respectively.


Statistical analyses: Two-way repeated measures ANOVA followed by post hoc Tukey's multiple comparison test through day 15 or 16 were performed for clonogenic assays. One-way ANOVA for PD and IHC studies and two-way repeated measures ANOVA for in vivo efficacy studies were performed with Dunnett's test vs the vehicle group or between the indicated groups.

# BBO-11818 is a potent and selective pan-KRAS binder and KRAS:RAF1 PPI inhibitor

|                                                     |                      | BBO-11818     |        |
|-----------------------------------------------------|----------------------|---------------|--------|
|                                                     | RAS Allele           | <b>GppNHp</b> | GDP    |
| RAS SPR,<br>K <sub>D</sub> (nM)                     | KRAS <sup>G12D</sup> | 7.40          | <0.003 |
|                                                     | KRAS <sup>G12V</sup> | 13.2          | 0.370  |
|                                                     | KRAS <sup>G13D</sup> | 17.5          | 0.300  |
|                                                     | KRASWT               | 20.0          | 0.250  |
|                                                     | NRASWT               | >200,000      | 2460   |
|                                                     | HRASWT               | >200,000      | 831    |
| PPI: KRAS(GTP)/RAF1 effector, IC <sub>50</sub> (nM) | KRAS <sup>G12D</sup> | 28            |        |
|                                                     | KRAS <sup>G12V</sup> | 61            |        |
|                                                     | KRAS <sup>G12C</sup> | 47            |        |
|                                                     | KRAS <sup>G12R</sup> | 51            |        |
|                                                     | KRASWT               | 120           |        |

# BBO-11818 inhibits ERK phosphorylation and cell proliferation in KRAS-mutant cell lines





# 1.53 3.46 21.7

4.35

 $> 10 \mu M$ 

 $> 10 \mu M$ 

| KRAS variant         | EC <sub>50</sub> (nM) |
|----------------------|-----------------------|
| KRAS <sup>G12D</sup> | 2.21                  |
| KRAS <sup>G12V</sup> | 31.2                  |
| KRAS <sup>G12C</sup> | 2.26                  |
| KRAS <sup>G12A</sup> | 5.32                  |
| KRAS <sup>G12R</sup> | 400                   |
| KRAS <sup>G12S</sup> | 3.09                  |
| KRAS <sup>G13D</sup> | 71.7                  |
| KRAS <sup>Q61X</sup> | 3,170                 |
| KRAS <sup>AMP</sup>  | 7.62                  |
| HRAS <sup>MUT</sup>  | 4,030                 |
| NRAS <sup>MUT</sup>  | 3,720                 |
| BRAFMUT              | 7.430                 |

KRASG12V

KRASG12C

KRASG12A

KRASG12R

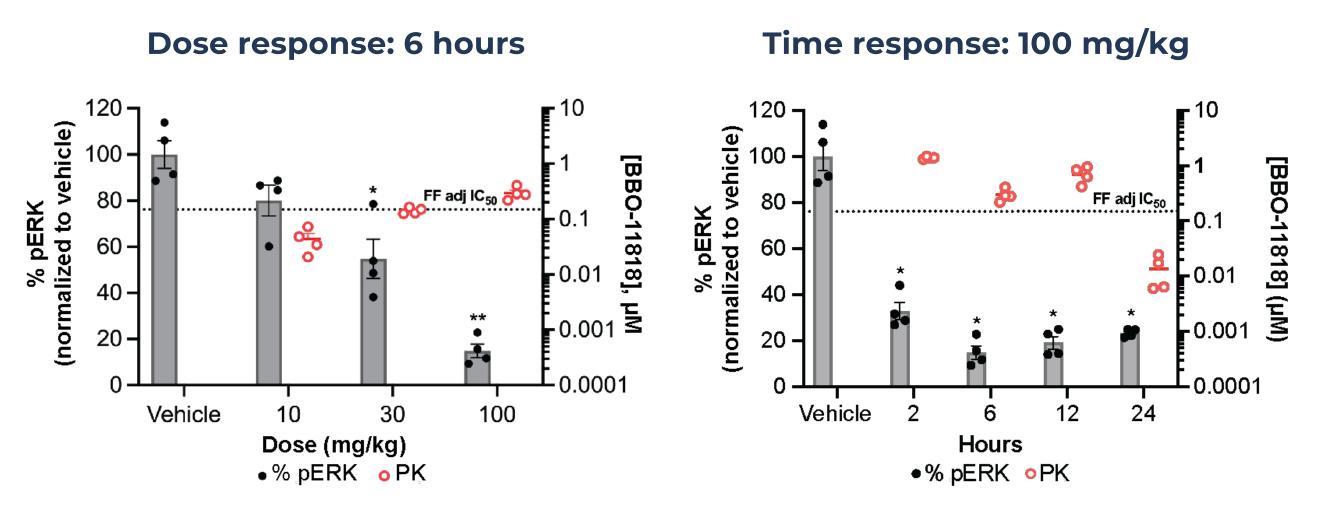
KRASG12S

KRASG13D

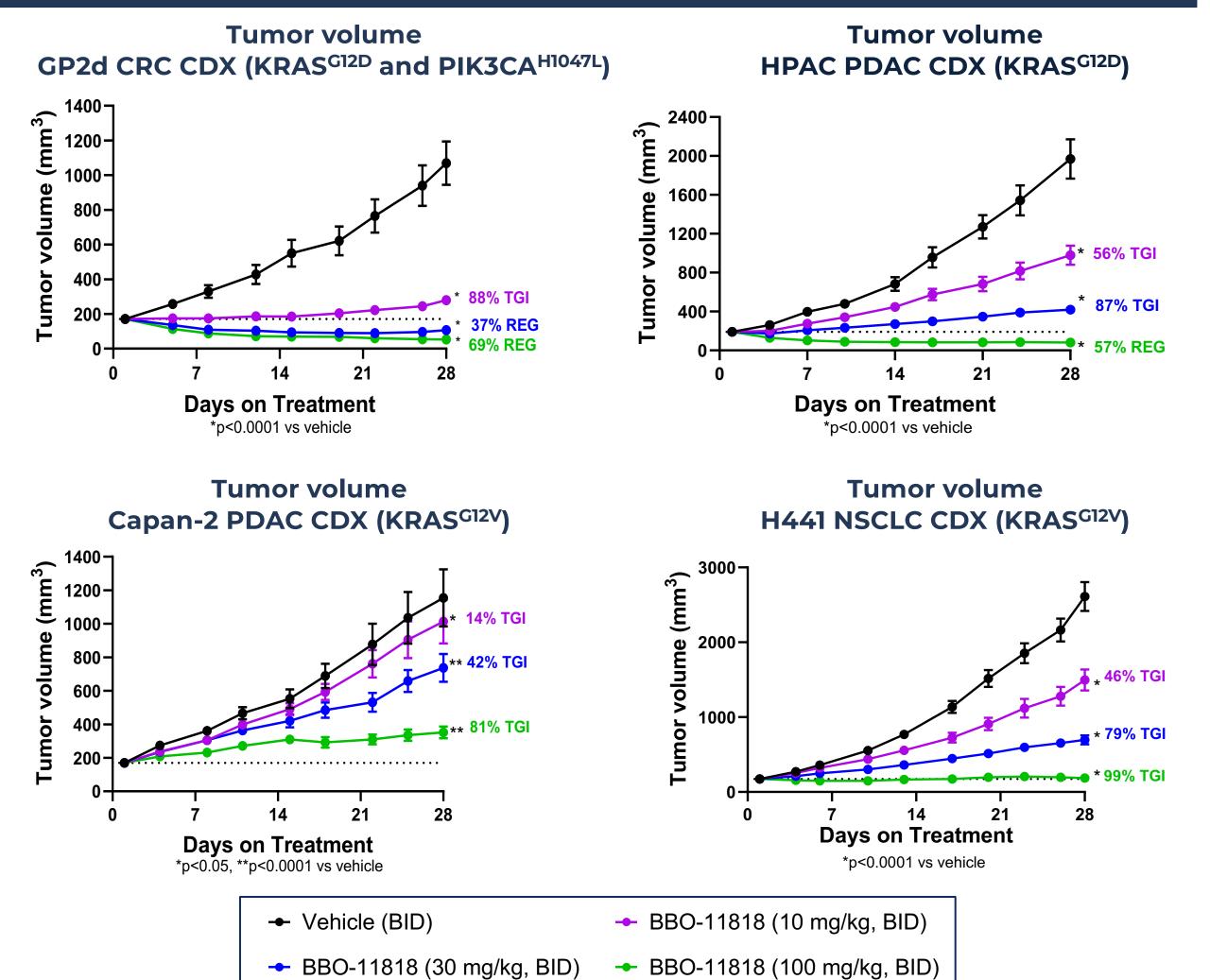
KRAS<sup>Q61X</sup>

**KRAS**AMP

NRASMUT

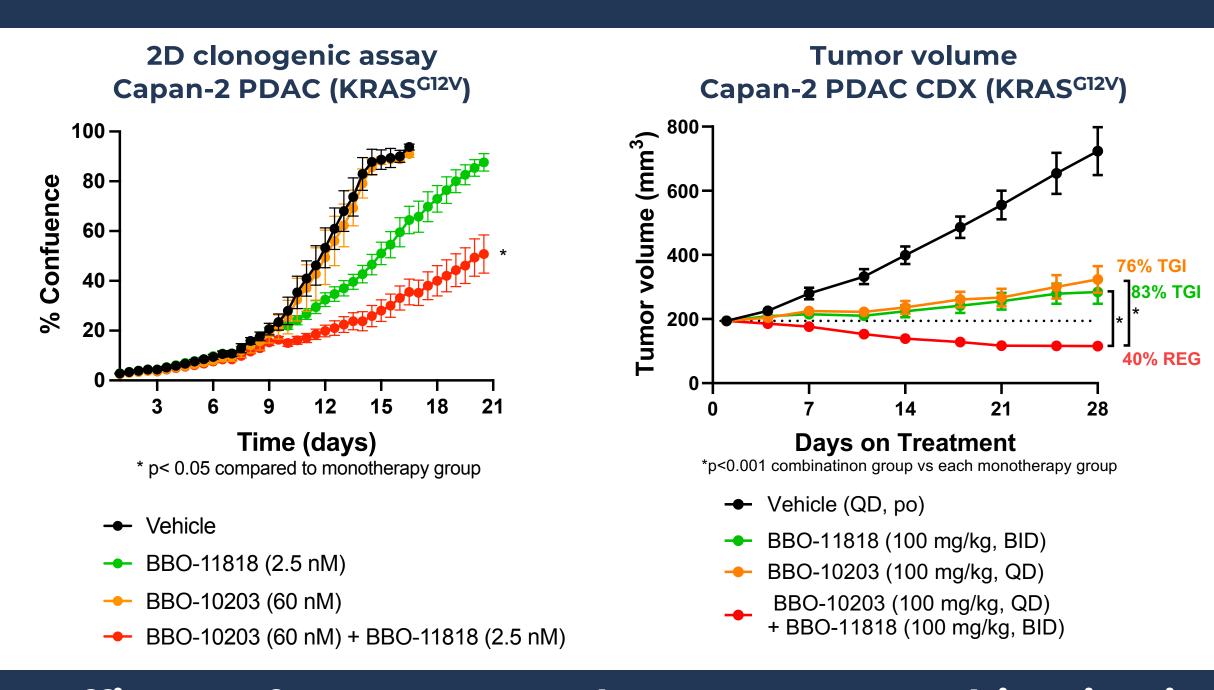

BRAFMUT

# BBO-11818 has a favorable ADME and PK profile and is orally bioavailable

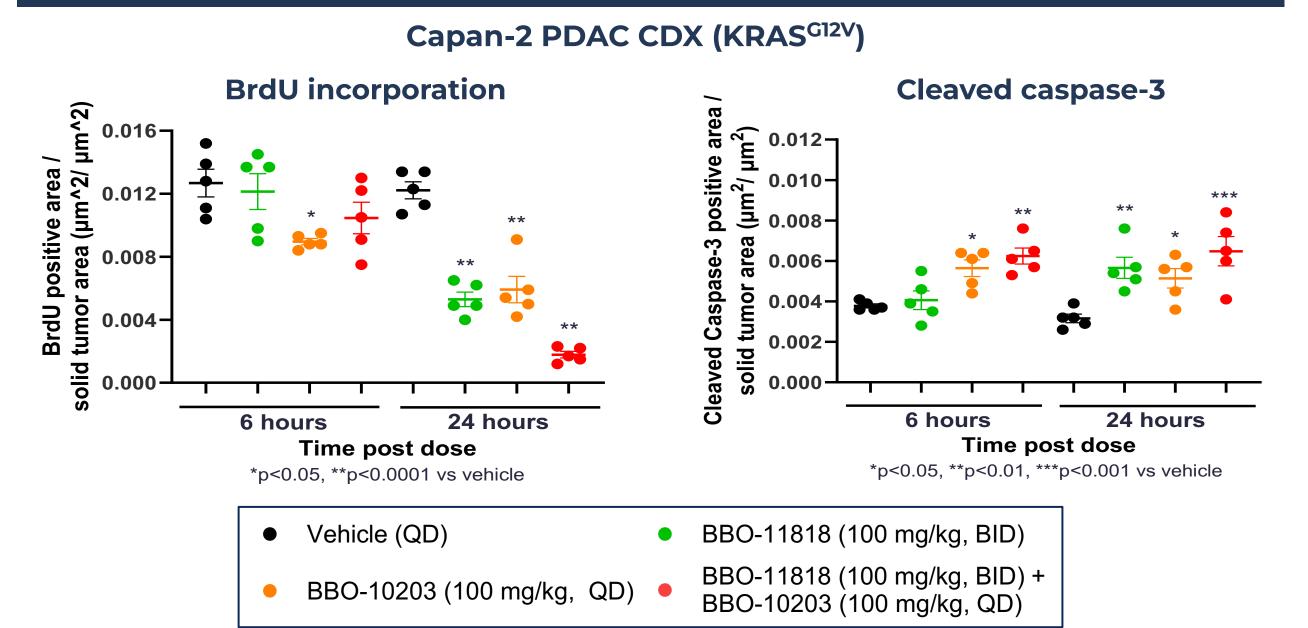

| Parameter                                  | BBO-11818               |
|--------------------------------------------|-------------------------|
| Mouse PK CL (mL/min/kg) / V (L/kg) / % F   | 45 / 4.9 / 18           |
| Rat PK CL (mL/min/kg) / V (L/kg) / % F     | 30 / 7.8 / 16           |
| Dog PK CL (mL/min/kg) / V (L/kg) / % F     | 11 / 5.8 / 28           |
| Minipig PK CL (mL/min/kg) / V (L/kg) / % F | 47 / 7.8 / 27           |
| Selectivity: hERG & safety panel           | No red flags            |
| Minimal DDI liabilities for combinations   | No predicted DDI issues |

# BBO-11818 demonstrates dose- and time-dependent inhibition of pERK in a KRAS<sup>G12D</sup> model

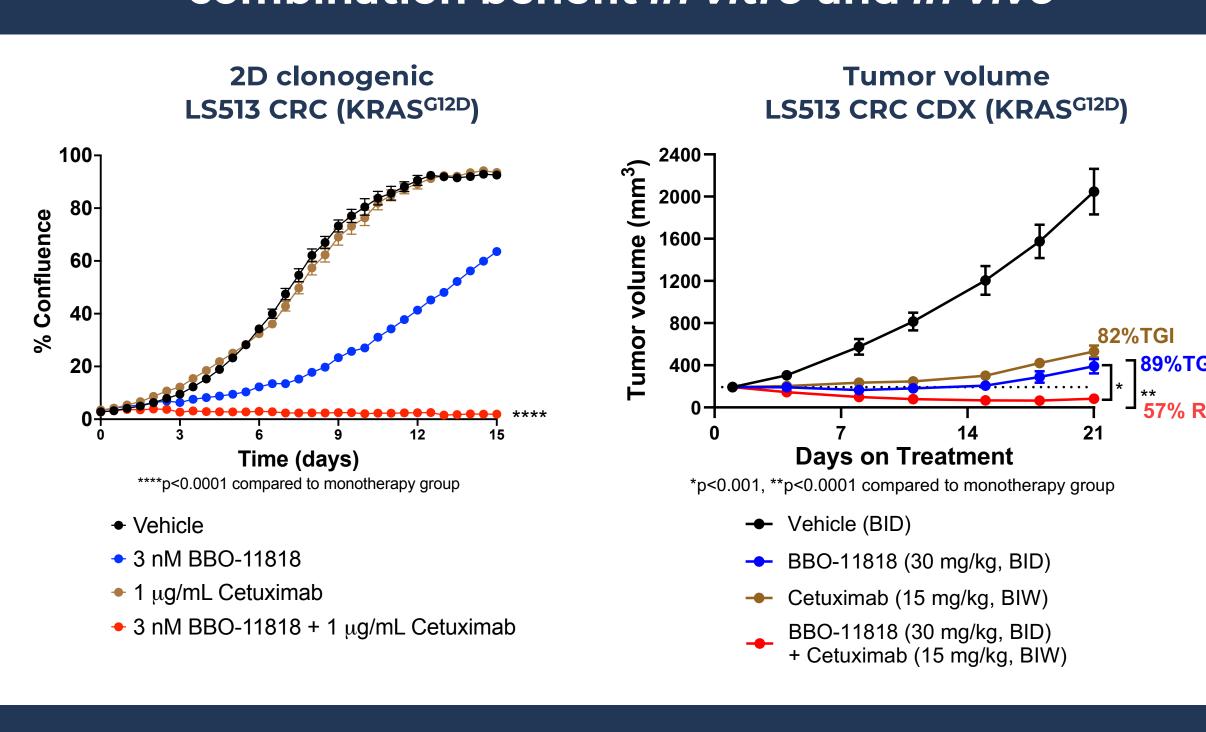
#### HPAC PDAC CDX (KRAS<sup>G12D</sup>)




# BBO-11818 demonstrates efficacy in KRAS<sup>G12D</sup> and KRAS<sup>G12V</sup> CDX models

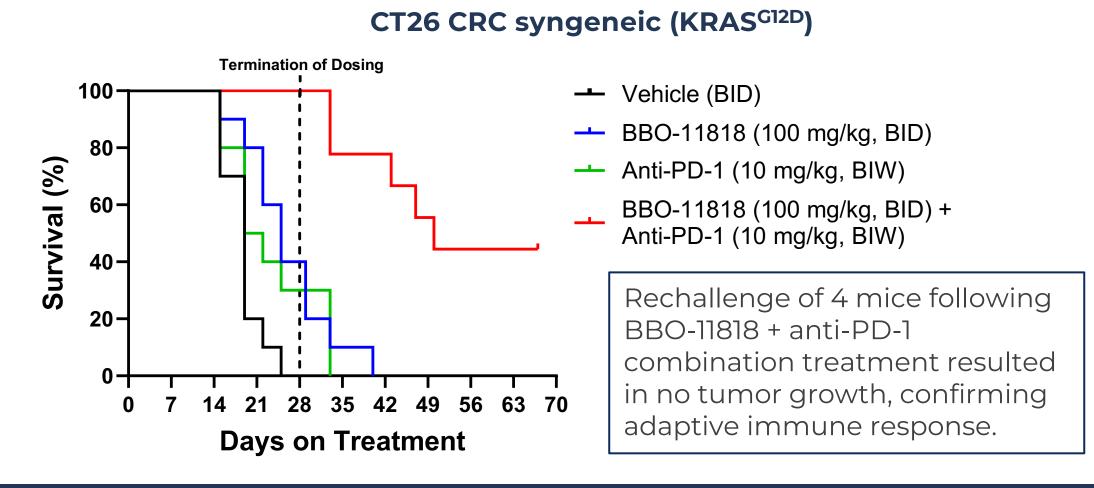



### BBO-11818 and BBO-10203 (RAS:PI3K $\alpha$ breaker) show a combination effect in vitro and in vivo


→ BBO-11818 (30 mg/kg, BID)



# Efficacy of BBO-11818 and BBO-10203 combination is driven by decrease in tumor cell proliferation and increase in apoptosis




# BBO-11818 and EGFR inhibitors demonstrate combination benefit in vitro and in vivo



# The combination of BBO-11818 and anti-PD-1 antibody improves survival *in vivo*

# Survival



#### Conclusion

- BBO-11818 is a potent pan-KRAS inhibitor targeting both GTP-bound and GDPbound forms of KRAS, with good selectivity over HRAS and NRAS.
- BBO-11818 potently inhibits ERK phosphorylation and proliferation in KRASdependent cell lines in vitro.
- dependent inhibition of pERK in in vivo PD studies. ■ BBO-11818 demonstrates robust *in vivo* efficacy in KRAS<sup>G12D</sup> and KRAS<sup>G12V</sup> CDX

BBO-11818 has favorable PK and oral bioavailability and shows dose- and time-

- BBO-11818 exhibits combination effect with the RAS:PI3Kα breaker BBO-10203
- and cetuximab in vitro and in CDX models. The efficacy of the BBO-11818 and BBO-10203 combination is driven by a robust
- decrease in tumor cell proliferation and increase in apoptosis. BBO-11818 also shows a combination benefit with anti-PD-1 treatment, resulting in complete tumor regressions in the CT26 syngeneic model.
- The Phase 1a/1b KONQUER-101 study (NCT06917079) has been initiated and is enrolling patients globally with KRAS G12A, G12C, G12D, G12S, or G12V mutation, or KRAS-amplification.

#### References and acknowledgements

1- Prior, Ian A., Fiona E. Hood, and James L. Hartley. The frequency of Ras mutations in cancer. Cancer research 2020;80(14): 2969-2974.

2- Liu J, Kang R, Tang D. The KRAS-G12C inhibitor: activity and resistance. Cancer gene therapy. 2022;29(7):875-8.

This work was performed in collaboration with FNL and LLNL



models



