

BBO-10203, an orally bioavailable small molecule that disrupts the RAS:PI3K α interaction leading to pAKT and tumor growth inhibition in models of breast, lung and colorectal cancer

Pedro J. Beltran, Ph.D. Chief Scientific Officer BBOT South San Francisco, CA

Conflict of Interests

Disclosures:

Current employee and stockholder of BridgeBio Oncology Therapeutics (BBOT)

B

BBO-10203: a first-in-class Breaker of the RAS:PI3K α interaction

Assay	BBO-10203
MALDI-TOF	>90% at 15 min
TE PI3K $lpha$ RBD (IC ₅₀)	3 nM
рАКТ (IC ₅₀)	4 nM
Kinact/K _i	7,100 M ⁻¹ S ⁻¹
ED _{50/90}	2.5 / 4.0 mg/kg
Regressions	30 mg/kg

TE: Target engagement (PI3Kα RBD) Cell and in vivo data: KYSE-410 (HER2/KRAS^{G12C})

- Binds specifically to the RBD of PI3K α
- Does not inhibit the kinase activity of $\text{PI3K}\alpha$
- Forms covalent bond with C242
- Blocks binding of K-, H-, and N-RAS to PI3K α
- Agnostic to mutational status of either partner
- Inhibits pAKT with single digit nM potency
- No hyperglycemia *in vivo* (oGTT in C57BL/6 male mice)
- Tumor regressions @ 30 mg/kg QD
- Phase 1 BREAKER-101 (NCT06625775) trial is now open

Synchronized co-activation of MAPK and AKT pathways by RAS is important to maintain a productive malignant phenotype

ENA 2024

36th Symposium

GF: Growth Factor, RTK: Receptor Tyrosine Kinase, AKT: Protein Kinase B, RAS: Rat Sarcoma Virus, PI3Ka: Phosphoinositide 3-kinase alpha EORTC

Genetic disruption of the RAS:PI3Kα interaction inhibits KRAS^{G12D} – driven tumor growth without hyperglycemia

Breaker MOA

GF: Growth Factor, RTK: Receptor Tyrosine Kinase, AKT: Protein Kinase B, RAS: Rat Sarcoma Virus, PI3Kα: Phosphoinositide 3-kinase alpha

T208D and K227A mutations in the RAS-Binding Domain (RBD) of PI3K α slow KRAS^{G12D}-driven growth

Requirement for Interaction of PI3-Kinase p110 α with RAS in Lung Tumor Maintenance

Esther Castellano,^{1,7} Clare Sheridan,^{1,7} May Zaw Thin,² Emma Nye,³ Bradley Spencer-Dene,³ Markus E. Diefenbacher,⁴ Christopher Moore,¹ Madhu S. Kumar,¹ Miguel M. Murillo,^{1,4} Eva Grönroos,⁵ Francois Lassailly,² Gordon Stamp,³ and Julian Downward^{1,4,7}

B

Hypothesis: a small molecule that binds the RBD domain of PI3K α could mimic the effect of the RBD mutations

No effect on Glucose Metabolism

The pocket occupied by the RAS:PI3K α glue inspired us to use structural information to design a Breaker

SBDD

PI3K α + KRAS + Glue

Model showing the steric clash between BBO-10203 (breaker) and the Y40 residue of KRAS

 $PI3K\alpha + KRAS + Breaker$

EORTC

B

CANCER INSTITUTE American Associati for Cancer Research

NATIONAL

BBO-10203 covalently and selectively binds to PI3K α RBD

Crystal structure of PI3K α -RBD covalently labeled with **BBO-10203**

Electrostatic surface representation showing the binding pocket in PI3K α where BBO-10203 binds (left) and Apo-protein (right)

Sequence alignment of RBD of all four PI3K isoforms showing deletion and lack of conservation of key residues

			Q205	Y20	7							122	5 k	(228	3					C2	242	Y24	46	Y2	50			
			- 🔺 -	• 🔺				•					•					•										•
$\mathbf{PI3K}\alpha$	200	PNND	KQI	K Y T	LK	ΙN	HD	CV	ΡEÇ	VI	AE	ΑI	R	(K)	٢R	SMI	LГ	SSE	QL	КL(CVI	ιЕΫ	QQ	GKY	ΖI	K	VC (GCD
ριзκβ	203	FENC	QD۱	/FS	FQ	VS	ΡNΙ	ΜN	PIK	VN	1EI	AI	Q	RI	Т	ΙHΟ	G.		••	. KI	EDE	: V <mark>S</mark>	S P Y		ZVI	Q	VS	GRVD
ΡΙ3Κ δ	196	FEGS	EES	SFI	FQ	VS	ΤK	DV	PLA	LМ	1 A C	AL	R	K	Υ	VFI	R .		••	.Q]	РLV	ΖE	PE	D	ζΤI	Q	VN (GRHD
ριзκγ	224	IHRS	ТΤЗ	SQI	ΙK	VS	P D I	DТ	P G A	II	QS	FF	T	KM7	ΥK	••	•••]	KKS	LМ	DII	PES	S Q <mark>S</mark>	δEÇ)DI	' V I	R	VC (GRD 🖻

B

BBO-10203 binds specifically to the alpha isoform of PI3K and breaks its interaction with K-, H- and N-RAS

A 2024

EORTC NCI

36th Symposium

for Cancer Research

INSTITUTE

Cell potency and selectivity

American Association

for Cancer Research

Differences in cellular pAKT inhibition are driven by RAS' ability to activate AKT

NSTITUTE

for Cancer Research

BBO-10203 preclinical PK properties – good oral exposure

Species	Parameters	BBO-10203
Mouro	IV Cl (mL/min/kg) / t _{1/2} (hr) / V _{ss} (L/kg)	26 / 0.86 / 1.2
wouse	%F @ 30 / 100 / 300 / 600 / 1000 mg/kg PO	24 / 31 / 30 / 25 / 38
Dog	IV Cl (mL/min/kg) / t _{1/2} (hr) / V _{ss} (L/kg)	16 / 6.9 / 3.7
Dog	%F @ 10 / 30 / 100 mg/kg PO	63 / 63 / 82

B

13

BBO-10203 drives strong target engagement and efficacy in the KYSE-410 (HER2^{amp}/KRAS^{G12C}) CDX model

KYSE-410 PD Assay (8 hrs)

KYSE-410 Efficacy

for Cancer Research

BBO-10203 dosed orally

BBO-10203 does not cause hyperglycemia and is well tolerated after 28-day repeated dosing

Body Weight % Change

- Vehicle (QD, po)
- BBO-10203 (3 mg/kg, QD)
- --- BBO-10203 (10 mg/kg QD)
- BBO-10203 (30 mg/kg, QD)
- BBO-10203 (5 mg/kg, BID)
- BBO-10203 (15 mg/kg, BID)
- 400 **** **** Blood Glucose (mg/dL) 300 *** 200 100 0--60 -30 30 60 90 120 0 Treatment Glucose dosed dosed Time (min)
- Vehicle (QDx1)

oGTT Results: Blood Glucose Levels

- Alpelisib (50 mg/kg, QDx1)
- Alpelisib (20 mg/kg, QDx1)
- BBO-10203 (100 mg/kg, QDx1)

One-way ANOVA with Dunnett's multiple comparisons test vs vehicle: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

> EORTC NIH NATIONAL CANCER INSTITUTE

BBO-10203 dosed orally. oGTT: oral glucose tolerance test

BBO-10203 inhibits pAKT leading to monotherapy and combination benefit with trastuzumab in the HER2+ BC models

HER2^{amp} Cell Lines

BT-474 (HER2^{amp} / PIK3CA^{K111N})

MDA-MB-453 (HER2++ / PIK3CA^{H1047R})

- Vehicle (QD, po)
- BBO-10203 (100 mg/kg, QD, po)
- Trastuzumab (20 mg/kg, Q7D, ip)
- BBO-10203 + Trastuzumab

- Vehicle (QD, po)
- BBO-10203 (30 mg/kg, QD, po)
- Trastuzumab (4 mg/kg, Q7Dx4, ip)
- BBO-10203 + Trastuzumab

RM ANOVA, *p<0.05, **p<0.001 compared to monotherapy group

B 15

BBO-10203 inhibits pAKT leading to monotherapy and combination benefit with KRASi in KRAS mutant tumors

KRAS mutant cell Lines

- SW1463 — SK-CO-1
- H23
- H358
- CAL-62
- DV-90

— LU65

— LS 123

— SW-756

- LU99

H358 (KRAS^{G12C})

*p<0.01, **p<0.0001 compared to monotherapy group

- Vehicle (QD, po)
- BBO-10203 (100 mg/kg)
- BBO-8520 (3 mg/kg)
- BBO-10203 + BBO-8520

T84 (KRAS^{G13D}, PIK3CA^{E542K})

*p<0.05, **p<0.0001 compared to monotherapy group

B 16

BBO-8520: KRAS^{G12C} ON/OFF inhibitor 5-FU: 5-fluorouracil

Capan-1

NCI-H460

— T84

— 143B

Panc 03.27

RM ANOVA, *p<0.05, **p<0.001 compared to monotherapy group

Strong G₁ arrest and apoptosis in KRAS mutant NSCLC and PDAC models in combination with KRASi

24 hours

24 hours

All compounds dosed orally

17

Note: LHS- Two-way repeated-measures ANOVA followed by Dunnett's multiple comparisons test BBO-8520: KRAS^{G12C} ON/OFF inhibitor BBO-11818: panKRAS ON/OFF inhibitor

BBO-10203: a first-in-class Breaker of the RAS:PI3K α interaction

- BBO-10203 provides a novel approach to inhibit the 2nd most mutated oncogene in human cancer
- Potential monotherapy and combination benefit in HER2^{amp}, KRAS and PI3K α mutant tumors
- BBO-10203 is agnostic to mutation status of either partner allowing targeting of KRAS mutant and PI3K α WT tumors
- Data highlights the potential importance of RAS-coordinated activation of the MAPK and AKT signaling pathways for productive tumor cell growth and survival
- The phase 1 trial, BREAKER-101 (NCT06625775) is now open

The Team

Olga Botvinnik	Jin Ju	Hiywot Takkele
Howard Chang	Sunyoung Lee	Kalyan Vasudevan
Michael Corbett	Ken Lin	Daniel Watson
Tony Chen	Mike Monteith	Bin Wang
Robert Czerwinski	Rick Panicucci	Keshi Wang
Sofia Donovan	Krishna Rayanapati	Paul Wehn
Adrienne Felty	Erin Riegler	James Winter
Cindy Feng	Saman Setoodeh	Maggie Yandell-Zhao
Siyu Feng	Jin Shu	Cathy Zhang
Lijuan Fu	Devansh Singh	Zuhui Zhang
Jennifer Gansert	Rohan Shah	James Rizzi
Nadege Gitego	Kanchan Singh	Dana Minnick
Foster Gonsalves	Kerstin Sinkevicius	Eli Wallace
Victoria Hodson	Carlos Stahlhut	Yong Ben
Tony Horton	Derek Swartz	Pedro Beltran
Chase Hughes	James Stice	Rui Xu
Chunmei Ji	Kyle Sullivan	

Frank McCormick	Erik Larsen
Dwight Nissley	Tao Liao
Dhirendra Simanshu	Todd Harley
Patrick Alexander	Anna Maciag
Bill Bocik	Dana Rabara
Albert Chan	Megan Rigby
Daniel Czyzyk	Alok Sharma
Caroline DeHart	Swapnil Singh
John-Paul Denson	Brian Smith
Sathiya Dharmaiah	Thomas Sova
Robert D'Ippolito	Andy Stephen
Marcin Dyba	Monalisa Swain
Dominic Esposito	David Turner
William Gillette	Jayasudhan Yerabolu

EORTC

AACR

American Association

for Cancer Research

NATIONAL CANCER

INSTITUTE

NIH

Felice Lightstone

Yue Yang

