bridgebio

oncology therapeutics

BBO-8520, a first-in-class, direct inhibitor of KRAS^{G12C} (ON)

Pedro J. Beltran, Ph.D.

Chief Scientific Officer

5th Annual RAS-Targeted Drug Development Summit

September 2023

- Current shareholder and employee of BridgeBio Pharma
- Current shareholder and ex-employee of Amgen, Inc

KRAS^{G12C} is the most common mutated KRAS isoform found in NSCLC

Lung cancer is the second most common cancer in the US with greater than 235K in new cases and 130K deaths a year

Lung cancer is the second leading cause of death in US and, by far, the leading cause of cancer death – 25% of all cancer deaths are from lung cancer

Non-small cancer lung cancer (NSCLC) accounts for ~85% of lung cancer

KRAS^{G12C} mutant found in ~15% of all NSCLC (and ~3% of CRC)

KRAS^{G12C}-GDP Inhibitors target a "dead" protein with no signaling or transforming potential

DO NOT POST - 4

KRAS^{G12C} amplification and RTK-drive ensure that enough KRAS^{G12C} is found in the (ON) state rendering GDP inhibitors inactive

KRAS^{G12C} amplification is associated with clinical progression

• Rapid loss of G12C amplification with change in treatment suggest that it is a likely "adaptive mechanism" of resistance to GDP inhibitors

Newly synthesized KRASG12C is GTP-bound

Cetuximab doubled the objective response rate to adagrasib in CRC

- EGFR and other RTKs identified in 30% of resistant NSCLC
- EGFR and Her2 activation often observed as quick response to GDP inhibitors

Efficacy of KRAS^{G12C}-GDP inhibitors in the clinic is clearly suboptimal when compared to other driver-targeted therapies in the pathway

KRAS^{G12C}-GDP inhibitors

RTK targeted agents

	Sotorasib	Adagrasib	GDC-6036	Selpercatinib	Alectinib	Osimertinib	Capmatinib
		2L+ KRAS G12C NSCLO	2	2L+ RET Fusion+ NSCLC	1L ALK+ NSCLC	1L EGFR mutant NSCLC	1L cMET exon14 NSCLC
ORR	41%	43%	53%	64%	79%	77%	68%
mPFS (mo.)	6.3	6.5	13.1	tbd	25.7	18.9	12.4

Phase 3 CODEBREAK 200 – PFS 5.6 months; ORR 28%

ORR, overall response rate PFS, progression-free survival; Sources: Sotorasib data from registrational Ph2 CODEBREAK 100 & Ph3 CODEBREAK 200 results presented at 2022 EMSO meeting; Adagrasib data from KRYSTAL-1 results presented at 2022 ASCO Meeting; GDC-6036 data from 2022 WCLC meeting; Analog data taken from product labels

Optimal "target" coverage of mutant KRAS^{G12C} requires activity against KRAS^{G12C} (ON)

DO NOT POST - 7 Jb

BBO-8520 is the only direct KRAS^{G12C} inhibitor that can show potent activity against KRAS^{G12C} (ON)

First-	In-Class KRA inhibito	\S ^{G12C} dual r	b	bridgebio BBO-8520	Sotorasib	Adagrasib	GDC-6036
		15'		100	0	0	0
	KRAS ⁶¹²⁰ GTP	60 (ON))'	100	0	0	0
% modified	KRAS ^{G12C} GDF	, 15	;	91	80	73	77
	(inactive)	60)'	100	82	84	84
KRAS ^{G12C} : RAF Effector Bindin	1 g IC ₅₀ (nM)			33	>100,000	20,000	4,200
H358 pERK IC ₅₀	@ 30' (nM)			4	50	310	8
Cellular H		Cellular H358		43,000	776	1064	27,000
kinact/Ki (M*s))-1 KR/	KRAS ^{G12C} GTP (ON) KRAS ^{G12C} GDP (inactive)		17,900	0	0	0
	KR			>1,500,000	NA	180,000	1,100,000

KRAS^{G12C}-GDP inhibitors show no detectable activity against KRAS^{G12C} (ON) protein

Biochemical selectivity and global cysteine proteomics

Biochemical Selectivity

		Avi-KRAS-GppNHp	Avi-KRAS-GDP			
	wт	5.2	0.002			
KRAS SPR* Kd (uM)	G12D	7.3	ND			
ιτα (μιτι)	G12V	19	ND			
	G12C	0.033				
KRAS:RAF1	wт	1.95				
PPI** ICro (uM)	G12D	1.07				
	G12V	3.2				
	G12R	4.3				

Global Cysteine Proteomics

BBO-8520 shows high selectivity for KRAS^{G12C}

*Unable to determine a Kd for G12C due to extremely tight binding and covalent modification **PPI assay is HTRF-based, using 50nM of KRAS protein and RAF1 DO NOT POST - 9 /b

BBO-8520 drives an optimal SW-II interaction allowing modification of G12C in the active state

Apo KRAS G12C GppNHp crystal structure overlay with AMG510

Crystal structure of BBO-8520 in KRAS G12C GppNHp protein

³¹P NMR peak shifts suggest that BBO-8520 stabilizes State 1 of active GTP-bound KRAS, which disrupts effector protein binding

BBO-8520 disrupts effector protein binding by shifting conformational equilibrium of active GTP-bound KRAS^{G12C} to State 1

DO NOT POST - 11 /b

MAPK and PI3K α signaling suppression in KRAS^{G12C/A59G} double mutant that is locked in the active, GTP bound conformation

HELA G12C

HELA G12C / A59G

Only inhibitors with the ability to inhibit KRAS^{G12C} (ON), like BBO-8520, display potency against G12C/A59G mutants

Targeting KRAS^{G12C} (ON) activity allows for rapid and complete signal inhibition

Rapid and total inhibition of KRAS^{G12C} (ON)

Compound	Maldi-TOF% GTP, 5min	Time (min) to IC ₅₀	% of AMG510 Time to IC ₅₀	
AMG510	0	21.9	100	
MRTX849	0	20.5	100	
GDC-6036	0	12.7	55.8	
BBO-8520	94	5.4	13.5	

Targeting KRAS^{G12C}-GTP activity allows for rapid signal inhibition and overcomes RTK drive

GFs abundantly present in human tissues render GDP inhibitors inactive (H358)

% pERK (IC ₅₀ ,nM)							
Treatment	Vehicle	EGF (100ng/ml)					
AMG-510	355.4	>10000					
MRTX-849	203.1	5650					
BBO-8520	4.8	10.19					

Potency alone is not enough to maintain efficacy in the long-term clonogenic assay in H358 cells. Data suggests KRAS^{G12C}-GTP inhibition prevents fast adaptation

- Clonogenic assay suggests inhibition of GTP-bound KRAS^{G12C} may reduce development of resistance
- GDC-6036 shows similar loss of potency as other GDP inhibitors in EGF assays (data not shown)

BBO-9866: Back-up compound with similar properties to BBO-8520

DO NOT POST - 15

BBO-8520's potency and selectivity in KRAS^{G12C} cell lines

	BBO-85 (IC ₅₀	AMG-510 (IC ₅₀ ,nM)	
	Calu-1	0.3	16.4
	KYSE-410	0.8	1126.4
	LU-65	2.5	86.6
	LU-99	0.8	122.4
	MiaPaca-2	0.7	48.2
KRASG12C	NCI-H23	1.1	78.7
KNA5	NCI-H2030	0.5	18.3
	NCI-358	0.7	40.0
	SW1463	1.4	51.0
	SW1573	0.8	66.3
	SW837	0.5	66.0
	UM-UC-3	0.4	13.3
KRAS ^{G12D}	GP2d	19.3	-
KRAS ^{G12S}	A549	63.2	-
KRAS ^{G12V}	SW480	212.9	-
KRAS ^{WT}	NCI-H1993	646.3	-
BRAF ^{V600E}	A375	10000	10000

DO NOT POST - 16 /b

BBO-8520 shows superior potency and selectivity on viability in KRAS^{G12C} Cell Lines

	BBO-8520 3D Vi	AMG-510 (IC ₅₀ ,nM)	
	Calu-1	0.2	11.4
	KYSE-410	0.8	287.5
	LU-65	0.5	4.6
	LU-99	0.2	13.8
	MiaPaca-2	0.4	5.5
KDACG12C	NCI-H23	1.2	23.5
KKA5	NCI-H2030	0.2	5.0
	NCI-H2122	0.6	12.7
	NCI-358	0.4	3.7
	SW1463	0.6	19.8
	SW837	0.8	9.1
	UM-UC-3	0.2	15.0
KRAS ^{G12D}	GP2d	129.5	-
KRAS ^{G12S}	A549	641.4	-
KRAS ^{G12V}	SW480	10000	-
KRAS ^{WT}	NCI-H1993	147.3	-
BRAF ^{V600E}	A375	10000	10000

Single digit nM potency across multiple KRAS^{G12C} resistant mutations

	IC ₅₀ % Viability CTG									
	WT	G12C	G12C/A59G	G12C/G13D	G12C/Q61H	G12C/R68S	G12C/Y96D	G12D		
AMG-510	1000.0	27.8	152.4	1000.0	39.1	995.6	1000.0	1000.0		
MRTX-849	1000.0	8.7	26.0	371.1	8.9	745.6	1000.0	994.9		
RM-018	880.3	7.8	75.8	46.5	63.8	17.7	7.8	780.6		
BBO-8520	29.9	0.2	1.0	5.3	0.2	5.6	3.5	83.4		

Dose- and time-dependent inhibition of pERK correlates well with target engagement in the MIA PaCa-2 model

DO NOT POST - 19

BBO-8520 exhibits strong efficacy in KRAS^{G12C} models

BBO-8520 is efficacious in cell line and PDX models with greater potency, efficacy and differentiated activity

DO NOT POST - 20

BBO-8520 shows ~60% tumor regression in the KCP GEMM at 10 mg/kg QD

NYU Langone Health

NOTE: Mouse KC2614 (Vehicle) died the day before of 6 weeks MRI scan

In collaboration with Kwok Wong's lab

DO NOT POST - 21 /b

BBO-8520 demonstrates >50x more potency than AMG 510 (and MRTX849) in the MGH series of *KRAS^{G12C}* mutant NSCLC cell lines

	EC ₅₀ (nM)									
2D Viability	H358	LU65	MGH1112	MGH1114	MGH1088	MGH1062	MGH1138	MGH1143		
	KRAS ^{G12C/WT}	KRAS ^{G12C}								
BBO-8520	0.22	0.52	0.42	0.09	0.23	0.21	0.18	0.13		
AMG 510	18.15	28.04	28.29	65.20	22.16	16.92	14.42	13.37		
AMG 510/BBO-8520	83	53	67	725	95	81	78	86		

Data generated in Aaron Hata's Lab at MGH

BBO-8520 can drive deep responses in sotorasib-resistant MiaPaCa-2 tumors

Treatment of sotorasib resistant MiaPaPa-2 tumors with BBO-8520 led to 50% cures

Groups (n=10)		Individual Tumor volumes (day 92*)								
AMG510 (10 mg/kg, QD)	ND d29	ND d33	315	323	673	731	893	1122	1280	3520
AMG510 (10 mg/kg, QDx36) → AMG510 (100 mg/kg, QD)	ND d33	ND d43	60	201	357	358	451	666	952	1833
AMG510 (10 mg/kg, QDx36) → BBO-8520 (30 mg/kg, QD)	ND d22	ND d33	ND d50	ND d54	ND d61	ND d89	432	497	523	3200

*Day 75 for AMG-510 alone group, ND: not detectable, d: first day of non-detectable tumor

- Vehicle (QD for whole study)
- AMG510 (10 mg/kg, QD for whole study)
- AMG510 (10 mg/kg, QD×36),
 BBO-8520 (30 mg/kg, QD rest of study)
- AMG510 (10 mg/kg, QD×36), AMG510 (100 mg/kg, QD rest of study)

BridgeBio has designed first-in-class, potent and selective PI3K α :RAS breakers

- Structural insights provide a novel approach to develop PI3Kα:RAS breakers
- Small molecules covalently bind to a new induced pocket in PI3Kα
- PI3K α :RAS breakers selectively bind to PI3K α
 - PI3Kα amino acid sequence in the region of the binding pocket is unique amongst all the isoforms
 - No binding affinity to KRAS
- PI3Kα:RAS breakers do not affect kinase activity

Multiple series of potent PI3K α :RAS covalent inhibitors have been identified

Breaker activity can optimize target (pAKT) coverage of KRAS inhibitors

Combination of Breaker and RASi should optimize target coverage for AKT pathway

Homogenous inhibition of pAKT amongst NSCLC KRAS^{G12C} cell lines

Modified from: National Cancer Institute/Marielle Yohe, M.D., Ph.D.

Strong combination benefit is also observed in the KRAS^{G12Ci} resistant H2122 NSCLC model

H2122 KRASG12C / KEAP1mut / STK11mut

BridgeBio has designed a first-in-class, direct inhibitor of KRAS^{G12C} (ON)

- BBO-8520 is a first-in-class direct inhibitor of KRAS^{G12C} (ON) and inactive (GDP-bound) forms
 - Inhibition of the (ON) GTP-state is necessary to realize the full potential of KRAS inhibition
 - Inhibition of the (ON) state results in rapid and complete inhibition of KRAS activity independent of growth factor stimulation or KRAS amplification
 - BBO-8520 drives strong tumor growth inhibition in multiple models of KRAS^{G12C} even after resistance to sotorasib
- Multiple opportunities for combination in the clinic, including with BBOT's internal pipeline assets

Olga Botvinnik	Christina Liang	Kyle Sullivan
Howard Chang	Ken Lin	Bin Wang
Tony Chen	Frank McCormick	Keshi Wang
Nathan Collett	Sadaf Mehdizadeh	Paul Wehn
Sofia Donovan	Mike Monteith	James Winter
Ferdie Evangelista	Rick Panicucci	Maggie Yandell-Zhao
Cindy Feng	Erin Riegler	Cathy Zhang
Siyu Feng	Saman Setoodeh	Zuhui Zhang
Lijuan Fu	Jin Shu	James Rizzi
Jennifer Gansert	Devansh Singh	Dana Minnick
Foster Gonsalves	Kanchan Singh	Robert Czerwinski
Victoria Hodson	Kerstin Sinkevicius	Eli Wallace
Jin Ju	Carlos Stahlhut	Pedro Beltran
Sunyoung Lee	James Stice	Rui Xu

Frank McCormick	Erik Larsen
Dwight Nissley	Tao Liao
Dhirendra Simanshu	Roger Ma
Patrick Alexander	Anna Maciag
Bill Bocik	Dana Rabara
Albert Chan	Megan Rigby
Daniel Czyzyk	Alok Sharma
Caroline DeHart	Swapnil Singh
John-Paul Denson	Brian Smith
Sathiya Dharmaiah	Thomas Sova
Robert D'Ippolito	Andy Stephen
Marcin Dyba	Monalisa Swain
Dominic Esposito	David Turner
William Gillette	Jayasudhan Yerabolu
Claudia Haywood	

Felice	Lightstone
--------	------------

Yue Yang