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PI3Ka is a key regulator of proliferation, survival and glucose metabolism
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PI3Ka mutations are found at high 
prevalence in important indications

PI3Ka is a key central node for growth 
and survival signaling

PI3Ka is also the main player in the control of 
glucose metabolism

https://www.cbioportal.org/Nature Reviews Cancer volume 2, pages489–501, 2002

https://www.nature.com/nrc


PI3Ka has been clinically validated as a target in human tumors but it’s full 
potential has not been realized because of safety
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PFS (mo) ORR (%)

Fulvestrant 5.7 12.8

Alpelisib + 
Fulvestrant

11 26.6
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Alpelisib + 
Fulvestrand

64 57.7 35.6

Safety

• Dose interruptions occurred in 66% versus 21% in placebo 
• Dose reductions occurred in 55% versus 4.5% in placebo
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Alpelisib is a PI3Ka “kinase” selective inhibitor approved for ER+ Breast cancer in combination with fulvestrant

https://doi.org/10.1016/j.annonc.2020.05.001

https://doi.org/10.1016/j.annonc.2020.05.001


A novel approach is needed to inhibit PI3Ka activity in human tumors
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PI3Ka can be activated by RAS 
at the plasma membrane

T208D and K227A mutations in the RAS-
Binding Domain (RBD) of PI3Ka

Genetic disruption of the 
interaction results in efficacy

Combination of MAPK and 
PI3Ka inhibition drives strong 

efficacy……but also toxicity

Enable combination Efficacy: MAPK + PI3K

Breaker: Inhibiting the physical interaction between PI3Ka and RAS

RAS
PI3Ka p110

PI3Ka p85

Breaker

NUSSINOV ET. AL. TRENDS IN CANCER, REVIEW| VOLUME 3, ISSUE 3, P214-224, MARCH 2017

https://www.cell.com/trends/cancer/issue?pii=S2405-8033(16)X0005-2


Targeting the physical interaction between RAS and PI3Ka opens a new 
therapeutic avenue 

1994 20071996

The interaction between RAS and 
PI3Ka presents an opportunity 

for novel drug development 
efforts to target mutant RAS

2000 2013
R.Baserga J.Downward R. Williams
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Genetic data suggests that “breaking” RAS and PI3Ka should lead to efficacy 
(monotherapy and/or combination with KRASi)

KRASG12D-driven tumor growth is 
inhibited in mice with T208D and 

K227A mutations in the RAS-Binding 
Domain (RBD) of PI3Ka

Modified from: National Cancer Institute/Marielle Yohe, M.D., Ph.D.

Tumor Growth & Survival

In malignant cells, RAS likely plays a pivotal role 
in coordinating the signal for both pathways

Cancer Cell 24, 617–630, November 11, 2013

Efficacy and tolerability
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Can PI3Ka signaling be inhibited by disrupting its RAS interaction? Or would 
conventional (IGF1R/INR/IRS) signaling be able to overcome this approach?

Modified from: National Cancer Institute/Marielle Yohe, M.D., Ph.D.

No Tumor Growth ?

Breaker

A small molecule protein:protein inhibitor (PPI) 
should recapitulate this activity and allow for 

combinations

New RAS inhibitors

PanRAS inhibitor shows how much pAKT 
is driven by RAS
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BridgeBio has designed first-in-class, potent, and selective PI3Ka:RAS 
breakers

▪ Structural insights provide a novel approach to 
develop PI3Ka:RAS breakers

▪ Small molecules covalently bind to a new 
induced pocket in PI3Kα

▪ PI3Ka:RAS breakers selectively bind to PI3Ka 
̶ PI3Ka binding pocket is unique among isoforms

̶ Breakers exhibit no binding affinity to KRAS

▪ PI3Ka:RAS breakers do not affect kinase 
activity 

Multiple series of potent PI3Ka:RAS covalent inhibitors have been identified 

RAS

PI3Kα

Breaker
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PI3Ka:RAS Breaker “must have” characteristics

• Selective inhibition of the physical interaction between PI3Ka and Ras

• Blockade of K-, H, and N-RAS isoforms

• Dose-dependent target (PI3Ka) engagement in multiple cell types

• Significant inhibition of RAS-driven pAKT signal

• No pAKT inhibition in adipocytes and no hyperglycemia in vivo

• PK/PD and efficacy relationship in human cancer models

• Monotherapy and combination benefit with KRAS inhibitors

Status

DO NOT POST - 9



Covalent binding mechanism drives cellular potency 

Time Cmpd1 Cmpd2 Cmpd3 Cmpd4

% 
Modified

15’ 0 28 89 100

30’ 0 45 98 100

120’ 6 91 100 100

240’ 11 97 100 100

pAKT IC50

(nM)
- 650 130 14 1

MALDI-TOF MS correlates with pAKT IC50 Cysteine Proteome shows high 

selectivity for PI3Ka

DMSO v Breaker
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Breakers effectively and completely block the PI3Ka:RAS (K/H/N) interaction
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Breaker tethered PI3Ka
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Novel, small molecule covalent inhibitors prevent the interaction of Pi3Ka with K/H/N RAS in the ITC assay
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Breaker shows an equipotent effect on wild-type and mutant 
PI3Ka; covalent interaction is the key to potency
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Breaker effects transcriptional regulation and signaling inhibition similar to 
alpelisib, without inhibiting kinase activity

DMSO vs 
Breaker

DMSO vs 
Alpelisib

Breaker vs 
Alpelisib

Transcriptional Regulation

• No genes are significantly differentially regulated 
between breaker and alpelisib

• Data strongly suggest “on mechanism” effects of 
breaker
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Target engagement does not always result in pAKT inhibition – only if RAS-
driven

pAKTTarget Engagement

Downstream signaling 
inhibition is driven by biology 
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Breaker inhibits RAS-driven pAKT in tumor cells
Data suggests Her2/Her3 tumor cells are highly dependent on PI3Ka:RAS interaction
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Breaker does not inhibit insulin-mediated pAKT activation in an adipocyte 
model

Effect should lead to no hyperglycemia in vivo
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Dose
(QDx1, po)

pAKT
Plasma 

[compound]Inhibition
p value 

vs vehicle

1 mg/kg 1% 0.9996 6 nM

3 mg/kg 33% p<0.0001 15 nM

10 mg/kg 59% p<0.0001 56 nM

30 mg/kg 79% p<0.0001 390 nM

100 mg/kg 81% p<0.0001 2408 nM

Breaker shows dose- and time-dependent pAKT inhibition in the KYSE-410 
(Her2amp/KRASG12C) CDX model

pAKT IC50
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Group

(n=9) 

Day 28

TGI 
Mean tumor 

regression

Number of 

regressions

p value vs 

vehicle

p value vs 5 

mg/kg BID

p value vs 

15 mg/kg BID

Mean body 

weight change

Vehicle - - 0/10 - - - +8.1%

3 mg/kg, QD 70% - 0/10 <0.0001 - - +3.0%

10 mg/kg, QD 92% - 1/10 <0.0001 0.9403 - +1.1%

30 mg/kg, QD - 44% 10/10 <0.0001 - 0.7373 +0.6%

5 mg/kg, BID 91% - 1/10 <0.0001 - - -0.4%

15 mg/kg, BID - 49% 10/10 <0.0001 - - +0.5%

Two-way repeated measuress ANOVA followed by Dunnett’s multiple comparisons test was performed for statistical analyses for vehicle group comparisons (day 5 to 28)

Two-way repeated measures ANOVA of the indicated QD versus BID group means were performed for the statistical analyses (day 5 to 28)
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Breaker drives strong efficacy in the KYSE-410 (HER2amp / KRASG12C) CDX model
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Anti-tumor activity in the KYSE-410 CDX model is driven by strong decrease in 
proliferative fraction 
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Data supports, specific, on-target 
efficacy of breaker MOA

KRASG12C does not drive pAKT

Reduction in proliferative fraction is 
observed after single dose of Breaker

G1 arrest is the most common effect 
observed following treatment with a 

PI3Ka kinase inhibitor

BrdU positive area / solid tumor area (μm^2/ μm^2),  *p<0.05, p<0.01 vs vehicle

Single dose
30 mg/kg

Breaker and alpelisib achieve regressions, 
sotorasib is NOT efficacious
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Lack of insulin-driven pAkt inhibition in adipocytes translates in vivo

oGTT Results: Blood Glucose Levels C-peptide

No changes in blood glucose observed at 100 mg/kg (>3x regression dose)
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Identifying genotypes most dependent on the PI3Ka:RAS interaction

Good correlation between “positive genotypes” and gene dependency

One third of all cancer cell lines depend on PI3Ka:RAS interaction for activation of AKT signaling
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Crown Biosciences pAKT cell line screen (250+ cell lines)
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Her2-expressing cells demonstrate strong sensitivity to Breaker activity

pAKT in Her2+ cell lines Viability in Her2+ cell lines

Cell lines with high Her2-expression demonstrate sensitivity to both pAKT and 3D viability inhibition
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Strong monotherapy efficacy observed in breast cancer models with Her2 
expression, with or without PIK3CA mutations
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24
Modified from: National Cancer Institute/Marielle Yohe, M.D., Ph.D.
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Combination of Breaker and RASi should optimize 
target coverage for AKT pathway

New RAS inhibitors

Homogenous inhibition of pAKT amongst NSCLC 
KRASG12C cell lines
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Strong combination benefit seen in the KRASG12Ci sensitive NSCLC H358 Model

BBO-8520: Direct KRASG12C (ON) inhibitor, *RMANOVA

Combination benefit seen even 
in “very sensitive” model
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Strong combination benefit is also observed in the KRASG12Ci resistant H2122 
NSCLC model

Clonogenic Assay (in vitro)
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Effect of breaker combination is similar to a pan-PI3K inhibitor
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Legend Phenotype Model

Mutant RAS drives 
PI3Ka

GP2D

Mutant RAS and 
other RAS drives 

PI3Ka

H2122/SW1573

Mutant RAS drives 
PI3Ka

other RAS emerges 
under pressure 

H358

Other RAS
drives PI3Ka
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KRASi + Breaker

Diverse roles of RAS in driving PI3Ka activity can be addressed with Breaker

PI3Ka inhibition is key in optimizing the anti-tumor activity of mutant KRAS inhibitors



Summary: PI3Ka:RAS Breaker

• BridgeBio has identified first-in-class, potent (~10 nM), small molecule PI3Ka:RAS 
breakers that validate the importance of the physical interaction between PI3Ka 
and RAS in human tumor biology

• Breakers present a new therapeutic avenue to inhibit PI3Ka signaling in a tumor 
selective manner w/o hyperglycemia

• Pharmacology experiments show that this interaction is important in Her2amp, 
KRASG12x, and PI3Ka mutant tumors

• Breakers may enable the execution of clinical combinations of MAPK inhibitors 
(KRAS inhibitors) with PI3Ka inhibition

• We have selected a development candidate that is progressing towards the clinic
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